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Abstract

Identifying sub-populations based on longitudinal trajectories can provide new

avenues to answer theoretically interesting research questions. While many techniques to

accomplish this task exist, a common method used in psychology is the growth mixture

model. Recent simulations have found that this analytic method shows a decline in

performance for smaller sample sizes commonly found in psychological research (Kim,

2012; Peugh & Fan, 2012). This raises the question: are there better methods available for

smaller sample sizes? Monte Carlo simulations were used to explicitly compare growth

mixture models with other clustering methods, ranging on a spectrum from not-informed to

very-informed, across different simulation conditions. To compare results both between and

within analytic method, Kullback-Leibler divergence is introduced as a measure of cluster

solution misfit. Results show that despite this decreased performance for smaller sample

sizes, growth mixture models still outperform simpler, more general clustering methods.

Keywords: longitudinal clustering, growth heterogeneity, comparative simulation
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Growth mixture models outperform simpler clustering algorithms when detecting

longitudinal heterogeneity, even with small sample sizes

Who we are now is not the same person as who we were a year, a month, or even a

day ago. In a complex world, the use of longitudinal measurement allows psychological

researchers to measure this individual change systematically, while such information would

remain unknown if measured using a cross-sectional approach (Nesselroade & Ram, 2004).

With the goal of evaluating interindividual differences in intraindividual change,

longitudinal data are commonly analyzed using a homogeneous growth curve framework

(Nesselroade, 1991; MacCallum & Austin, 2000; Raudenbush & Bryk, 2002).

While such a framework is very powerful and intuitive, it makes the statistical

assumption that all observations from a particular sample follow a specified longitudinal

trend with normally distributed variance. This may not always be the case. For example,

Muthén (2004) examined heterogeneity in longitudinal trajectories of high school

mathematics achievement and found that three subpopulations existed within the larger

sample: poor, moderate, and good development. These groups differed in attrition rates,

with low dropout rates in the moderate (8%) and good (1%) development groups and a

much higher rate (69%) in the poor development group (Muthén, 2004). Unless this

longitudinal heterogeneity was modeled by potential moderators, such an interesting effect

with important substantive implications would have remained undiscovered.

Person-Centered Approaches to Model Growth Trajectories

In a more general sense, taking an unsupervised clustering approach can result in

identifying such homogeneous subpopulations within a larger heterogeneous sample, thus

indicating the need to uncover potential moderators in future research projects. Such

methods can also be used in a purely exploratory way to discover new findings in

previously collected data. This is particularly useful, given the cost-intensive nature of

longitudinal research designs (Swartout, Swartout, & White, 2011).
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Longitudinal, person-centered approaches have seen increased popularity in a variety

of sub-domains within psychology, such as child development (Jordan, Kaplan, Nabors

Oláh, & Locuniak, 2006), psychopathology (Steinman, Hunter, & Teachman, 2013), and

substance abuse (Malone, Van Eck, Flory, & Lamis, 2010) to name only a few. This may

be due to the increased availability of a recent technique, growth mixture modeling, in

popular statistical software packages such as MPlus, SAS, and R (Jung & Wickrama,

2008). Despite this recent increase in popularity for growth mixture modeling, techniques

to identify heterogeneity in longitudinal growth trajectories have been around for much

longer. For instance, Tucker (1966) introduced Tuckerized growth curves to identify

heterogeneity in learning trajectories. Over the years, many different longitudinal

clustering techniques have been developed and used successfully to answer questions across

a variety of substantive areas (e.g., Brandmaier, von Oertzen, McArdle, & Lindenberger,

2013). A question that remains understudied is how the relative performance of these

techniques compare to one another.

Previous Research Evaluating Longitudinal Person-Centered Approaches

The evaluation of longitudinal, person-centered approaches as stand-alone methods

are quite common in the literature. The majority of these focus on assessing criteria to

choose the correct number of clusters for the analysis in question. For example, Tibshirani,

Walther, and Hastie (2001) developed a metric to determine the number of clusters in a

k-means algorithm and showed via simulation that it outperformed other widely used

metrics for datasets with well-separated clusters. Simulations using traditional cluster

algorithms (i.e., k-means, partitioning around medoids, etc.) have received much attention

over the years. While the age of the techniques differ, similar simulation research for other

person-centered techniques, such as latent variable mixture models, are much more limited.

Given the recent popularity of latent variable mixture models, an increased focus is being

placed on evaluating the effectiveness of different cluster choice metrics for these methods.
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Tofighi and Enders (2008) simulated longitudinal samples with three latent classes

and found that the sample size adjusted Bayesian Information Criterion (BIC) identified

the correct number of clusters most often. Nylund, Asparouhov, and Muthén (2007)

examined metrics for latent class analysis, factor mixture models, and growth mixture

models, and found that the bootstrap likelihood ratio test consistently outperformed all

metrics, though the BIC performed the best out of the available information criteria.

Finally, Peugh and Fan (2012) focused on both homogeneous and heterogeneous samples of

longitudinal growth trajectories. Results indicated considerable variability for all metrics

depending upon dataset manipulations such as: number of clusters, sample size, and

whether trajectory sample size proportions were equivalent (Peugh & Fan, 2012).

More recently, researchers exploring the performance of growth mixture modeling

using Monte Carlo simulations have begun to focus on parameter bias and sample size

requirements. Depaoli (2013) compared various estimation techniques for GMMs, such as

maximum likelihood using the EM algorithm and Bayesian estimation using various priors,

for longitudinal data that included nonlinear trends. Results indicated that both accurate

information and prior knowledge estimation techniques showed less bias in the recovery of

growth parameters, while the other methods resulted in poorer results (Depaoli, 2013).

Kim (2012) examined the impact of varying number of indicators and sample size had on

performance of both single and multi-phasic growth mixture models. It was shown that

large samples were often neccessary to obtain accurate estimates. On cases with low cluster

separation and a large number of clusters, sample sizes over 1,200 were cited as being the

low threshold (Kim, 2012). Similar conclusions regarding large sample sizes for growth

mixture modeling were reached in other studies as well (Peugh & Fan, 2012).

These sample size recommendations are not surprising as latent variable models, such

as growth mixture models, are widely regarded as large sample techniques (Kline, 2005).

However, other methods that can be used to detect longitudinal heterogeneity, such as

k-means cluster analysis, have no such “rule of thumb” for suggested sample size. (Mooi &
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Sarstedt, 2011). This raises the question: could other methods with weaker requirements

for sample size outperform growth mixture models for smaller sample sizes?

While there are many studies evaluating the effectiveness of individual techniques,

both simulations and applications directly comparing different longitudinal person-centered

approaches are limited in number. Brossart, Parker, and Willson (1998) compared the

application of k-means clustering and Tuckerized growth curves on trajectories for a group

conflict scale and found similar results between the two methods. Muthén (2004) used

latent variable mixture modeling to compare latent class growth analysis to growth

mixture modeling. In a dataset measuring the development of adolescent delinquency,

results between the two methods indicated the possibility of different substantive

interpretations (Muthén, 2004). Thus, results between these methods have the potential to

yield more or less accurate approximations to the data, potentially resulting in different

conclusions being formed.

In addition, the evaluation criteria used most often in these longitudinal clustering

simulations, proportion of correct cluster choice and parameter bias, have potential

limitations. For example, proportion of correct cluster choice yields a binary response of

whether a particular clustering enumeration index chose the correct number of clusters a

priori. In sum, this dichotomization assumes that the cluster choice is either “right” or

“wrong.” This ignores the possibility that a solution which chooses the wrong number of

clusters could actually approximate the true cluster solution well, as well as the possibility

that a solution which chooses the correct number of clusters might approximate the true

cluster solution poorly. When using parameter bias, it becomes difficult to compute an

overall bias metric for all parameters for the purposes of comparison across simulation

conditions or analysis methods. A more desirable metric would address these two

shortcomings by evaluating a cluster solution regardless of whether the solution chose the

correct number of clusters to yield a measure of bias for all parameters in a single number.

For such a metric, we propose the use of Kullback-Leibler (KL) divergence. This value
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represents the amount of information lost when using one distribution to approximate

another (Kullback & Leibler, 1951).

This paper looks to explicitly compare the performance of clustering methods on

detecting longitudnal heterogeneity across a variety of sample sizes, with the clustering

methods ranging from not-informed (i.e., k-means) to very-informed (i.e., growth mixture

models) with regard to longitudinal information. Additionally, both cluster choice accuracy

and KL-divergence will be used as evaluation criteria to address the concerns mentioned

above. Given the previous research citing larger sample sizes being necessary for growth

mixture models, it was hypothesized that simpler, less-informed methods would outperform

growth mixture models for very small sample sizes (N = 150). However, as the sample size

increased (N > 600), it was also hypothesized that the benefit of explicitly specifying

growth would result in better performance for growth mixture models over less-informed

methods. To foreshadow the end result, while the traditional evaluation metric of

proportion correct cluster choice was somewhat inconclusive, using KL-divergence as a new

evaluation metric yielded a much more clear result, with growth mixture models

consistently outperforming the other methods, regardless of sample size.

Method

First, the analytic methods used in this comparative simulation will be outlined.

After that, the simulation conditions and evaluation criteria of proportion correct cluster

choice and KL-divergence will be explained.

Statistical Techniques and Implementation

Each dataset in this simulation was subjected to an automated implementation of all

four different clustering methods described below. While each method involved different

metrics, the logic remained essentially the same. First, each method used one metric to

determine the number of clusters to extract a priori. Note that this study was not focused

on evaluating enumeration indices, and thus the authors simply chose a widely used
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enumeration index for each technique. Two to five clusters were considered for each

method. Then, both true and estimated cluster membership were appended to the dataset

and evaluated based on two criteria. All simulations and analyses were conducted with R,

version 3.0.1 (R Core Team, 2013).

K-Means. K-means is an iterative, unsupervised learning algorithm with the goal

of partitioning a particular dataset into k clusters, where k is specified a priori

(MacQueen, 1967). The iteration follows a simple, four step process:

1. Once k is specified, k cluster centers are placed with random starting values.

2. Each data point is then assigned to the nearest cluster center1.

3. The centroid of each cluster becomes the new cluster center.

4. Repeat steps 2 and 3 until the algorithm converges.

Due to its simplicity and quick convergence, k-means is a very popular clustering technique

in the data mining community, although not necessarily in a longitudinal framework. In its

application to longitudinal data, it represents an observed-space, model-free approach.

Regardless of implementation, this technique has some potential drawbacks. Due to the

nature of the iteration involving cluster centroids, the algorithm typically finds clusters

with equivalent covariance matrices. Also, this technique converges to different results for

different starting values defined in the first step of the algorithm. Thus, multiple runs with

different starting values are needed to ensure the best solution has been found is necessary.

For this simulation, the k-means algorithm was implemented twice: once using all five time

points, and once using only the first (baseline) time point to serve as a naïve baseline

condition to compare to the other analytic techniques. Both applications of k-means

followed the same implementation.

Silhouette width was used to determine how many clusters to extract (Rousseeuw,

1987). For each datapoint, i, in a sample, this metric can be calculated using:

s(i) = b(i)− a(i)
max {a(i), b(i)} ,

1For this simulation, Euclidean distance was used.
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where a(i) is the within-cluster cohesion of each datapoint with its respective cluster, and

b(i) is the between cluster separation of each datapoint with the nearest cluster. Silhouette

width is then defined as the mean of s(i) over the entire sample. Because a goal of

clustering is to both minimize within-cluster distance and maximize between-cluster

distance, the k cluster solution that yields the largest value of silhouette width is used.

Both silhouette width and the k-means algorithm were implemented using the fpc package

in R, which utilizes multiple starting values to avoid local minima (Hennig, 2013).

Finite Mixture Models. As mentioned previously, a weakness of k-means is the

tendency to extract clusters with similar covariance structures. Finite mixture models

(FMMs), and more specifically Gaussian mixture models,2 are more flexible than k-means,

as they include the ability to model different covariance structures among the variables and

clusters of interest. Another added benefit of Gaussian mixture models is that they are

model-based, and thus yield model-based fit statistics (such as information criteria) to

compare the various cluster solutions of varying k (Fraley & Raftery, 2002). As such, in the

context of detecting longitudinal heterogeneity, Gaussian mixture models can be thought of

as an observed-space model-based approach.

Gaussian mixture models with k latent classes are of the form:

p(x) =
K∑

k=1
πk N (µk,Σk)

where N (µk,Σk) represents the Gaussian distribution for each class and πk represents the

mixture weight of one of the distributions and the sum of the mixture weights equals one.

Mixture weights and the parameters of each component Gaussian distribution are

estimated from the observed variables using an Expectation-Maximization (EM)

procedure. A Gaussian mixture model is considered to be a fuzzy clustering technique,

because each individual is assigned a probability of belonging to each mixture component.

2FMM is being used instead of GMM to avoid confusing Gaussian mixture models with growth mixture

models
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This is often cited as an advantage over hard clustering techniques such as k-means, where

each observation is assigned to only one cluster.

In estimating each Gaussian mixture, the optimal model was chosen according to

whichever k and covariance structure yielded the lowest Bayesian Information Criterion

(BIC; Schwarz, 1978). The BIC measures the fit of a model using likelihood with a penalty

term to reduce overfitting, and is defined by:

BIC = −2 lnL+ k lnn

where L is the maximized value of the likelihood function, k is the number of parameters to

be estimated in the model, and n is the sample size. BIC has been shown to perform well in

choosing the number of latent classes correctly for such models (Jedidi, Jagpal, & DeSarbo,

1997; Roeder & Wasserman, 1997). The mclust package in R was used to estimated finite

mixture models in this simulation (Fraley, Raftery, Murphy, & Scrucca, 2012).

Growth Mixture Models. Originally introduced by Muthén and Shedden (1999),

growth mixture modeling (GMM) is an extension of growth curve modeling, and allows the

estimation of parameters across unobserved subpopulations within the dataset (Muthén,

2004). Through this conceptualization, a growth mixture model is mathematically identical

to a multi-group latent growth curve. However, because the population heterogeneity is

unobserved, the number of subpopulations needs to be specified by the researcher. A

growth mixture model can be considered to be a latent-space model-based approach, and is

defined by the following formula:

Yti = ηk0i + λtηk1i + εkti

ηk0i = µk0 + ζk0i

ηk1i = µk1 + ζk1i

where Yti is the observed value for person i at time t, µk0 and µk1 are the mean intercept

and slope for each latent subpopulation k and εkti denotes the residual error term for
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person i at time t. Additionally, ζk0i and ζk1i represents each individual’s deviation from

the mean intercept and slope, respectively, in a particular latent class k. These deviations

have variances σ2
k0 and σ2

k1 in addition to σk01 as the covariance between them. Without

group membership, this is the specification for a latent growth curve model. An EM

algorithm is used to simultaneously estimate the specified hierarchical and class

membership probabilities (Wang & Bodner, 2007). Again, because this technique involves

assigning probabilities to individuals for belonging in each latent class, growth mixture

modeling is also a fuzzy clustering technique. Note that discrete class membership can be

inferred with maximum likelihood.

Since the data for this simulation are all based on linear change, this was the model

that was specified for all GMMs. Coming up with one metric to evaluate different clustering

solutions for GMMs is difficult, as there is still no commonly accepted enumeration index

for choosing the correct number of clusters. Nylund et al. (2007) have shown via simulation

that the BIC performed the best among fit statistics, though it was outperformed by the

bootstrap likelihood ratio test. Other simulation studies have reported more inconclusive

results, with no index acting clearly superior (Peugh & Fan, 2012). Again, as this study

was not focused on evaluating enumeration indices, the BIC was used as an individual

metric to select the number of clusters. Each model was built and estimated using the

lcmm package in R (Proust-Lima, Philipps, Diakite, & Liquet, 2013). Additionally, because

GMMs can converge to local minima, each analysis was run multiple times with random

starting values to increase the probability that a global minimum had been reached.

Evaluation Criteria

Evaluating correct choice of cluster number via various enumeration indices is a

popular method to evaluate the effectiveness of clustering techniques (Tibshirani et al.,

2001; Nylund et al., 2007; Peugh & Fan, 2012). However, focusing on this evaluation

criterion leaves the following question unanswered: How close might a potential result
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approximate the “true” cluster solution despite choosing the incorrect number of clusters a

priori? One can certainly imagine a situation where choosing the incorrect number of

clusters might result in a fairly good approximation, or another where choosing the correct

number of clusters might actually result in a poor approximation. For this reason, both

correct cluster choice and cluster solution misfit were included as evaluation criteria and

are detailed below.

Choice of Number of Clusters. For all conditions, clustering was performed

with two to five clusters and the method specific index was used to identify the optimal

number of clusters. An overall percentage was calculated for each condition indicating the

proportion of datasets within that condition that yielded the correct choice for number of

clusters.

Cluster Solution Misfit. Cluster solution misfit was measured for intercept and

slope parameter estimates using Kullback-Leibler (KL) divergence, a measure of relative

entropy. For distributions P and Q of a continuous random variable, KL divergence is

defined as:

DKL(P ||Q) =
∫+∞
−∞ ln

(
p(x)
q(x)

)
p(x)dx,

where p(x) represents the population distribution and q(x) represents a model, or

approximation, of p(x). The KL metric can then be interpreted as the information lost

when q(x) is used to approximate p(x), and thus lower values of KL-divergence indicate a

better approximatation of p(x) (Kullback & Leibler, 1951). Because the interest of this

article is clustering, both p(x) and q(x) can be assumed to be a Gaussian mixture model,

where p(x) is the dataset with all datapoints correctly classified and q(x) is the estimated

cluster solution. Unfortunately, no closed form of KL-divergence exists for Gaussian

mixtures. However, DKL = Ep[log(p(x)
q(x))], and so it can be estimated using a Monte Carlo

approximation with the following steps:

1. Draw n independent samples from p(x)
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2. Compute D̂KL(P ||Q) = 1
n

n∑
i=1

log

(
p(x)
q(x)

)

Note that very large sample sizes are neccessary to calculate an accurate approximate for

KL-divergence, and so 3 · 106 independent samples were drawn from the population

distribution for each dataset (Hershey & Olsen, 2007).

Simulation Conditions

Monte Carlo simulations were used in order to evaluate two evaluation criteria in

relation to four different clustering methods. Datasets were simulated from a heterogeneous

longitudinal population with two or three clusters. The total sample size was varied

between conditions to be either 150, 300, 600, 900, 1200, or 1500. As such, within-cluster

sample size in each condition was N
K
, where N is the total sample size and K is the number

of clusters. It was hypothesized that all clustering methods would perform best in

conditions with less clusters and larger sample sizes. In addition, there were three cases of

growth trajectory patterns in the heterogeneous conditions adapted from Peugh and Fan

(2012): the same intercepts and different slopes, the same slopes and different intercepts,

and different intercepts and different slopes. The three cases are presented in Figure 1.

XXXXXXXXXXXXX

X Figure 1 about here

XXXXXXXXXXXXX

All observations were simulated to follow a linear growth curve (McArdle & Epstein,

1987) with five time points and no missing observations3. The simulated model is

presented in a path diagram in Figure 2. Intercept variance was fixed to 0.3, slope variance

was fixed to 0.2, and the correlation between intercept and slope was fixed to 0.2 (and so

the covariance between intercept and slope is approximately 0.05) for all simulation

3Some methods investigated here have no straightforward way to hangle missingness. Thus, we assumed

full data for this study.
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conditions. Additionally, error variance was simulated to be 0.2 for all five time points4.

XXXXXXXXXXXXX

X Figure 2 about here

XXXXXXXXXXXXX

The degree of separation between clusters was manipulated in multivariate

Mahalanobis distance (M distance) units, defined as:

D2 = (µT rajectory1 − µT rajectory2)T Σ−1(µT rajectory1 − µT rajectory2),

where µ is intercept and slope vector for each cluster trajectory, and Σ is the covariance

matrix between them. Clusters were separated by D = 1.5 or D = 3. In the three cluster

case, the nearest clusters would vary by either 1.5 or 3 D units as well, indicating that the

furthest clusters would vary by 3 or 6 D units, respectively5. Because M distance

represents a multivariate effect size between clusters, it was expected that a larger value

would result in a higher likelihood of choosing the correct number of classes and less cluster

misfit measured by KL-divergence.

In total, this simulation had four different manipulations (sample size, M distance,

number of clusters, and intercept-slope relationship) implemented in a fully crossed design.

This resulted in the creation of 72 (6 x 2 x 2 x 3) unique dataset conditions. Each

condition was then simulated 200 times for a total of 14,400 sample datasets.

Results

First, simulation results will be presented for all conditions by both method and

sample size. Then, results will be presented by condition manipulation (number of clusters,

M distance, and intercept-slope relationship). Both metrics of correct cluster choice and

KL-divergence will be presented together.
4Both slope and error variance were manipulated in previous simulations, but were found to have no

differential effect on method and were not included.
5Note these differences are expressed in D units, not D2 units.
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Overall

As expected, the silhouette width metric for k-means on full data was stable

regardless of sample size when determining the correct number of clusters. The other three

methods showed increases along with sample size. While growth mixture models performed

best for sample size conditions <600, finite mixture models performed better for larger

sample sizes. Given that growth mixture models had the most longitudinal information,

this result is surprising and will be discussed in conjunction with the KL-divergence

evaluation metric below. In terms of the cluster choice metric, both finite and growth

mixture models performed the best. Refer to Figure 3 for the results for correct cluster

choice by sample size and method over all conditions.

XXXXXXXXXXXXX

X Figure 3 about here

XXXXXXXXXXXXX

KL-divergence depicts a much clearer picture of the relative performance of these

methods. Overall, all methods follow a similar trend, in that they show better

approximation to the population cluster solution as the sample size increases. Contrary to

the original hypothesis, k-means on baseline performs the worst, followed by k-means on

full data, finite mixture models, and growth mixture models. At no point are growth

mixture models inferior to the other three methods across sample size. This is an

unsurprising finding given that growth mixture models have the most longitudinal

information available with a correctly specified growth model. However, despite being

outperformed by finite mixture models with regard to the correct cluster choice metric,

growth mixture models show relatively stable KL-divergence results across sample size

conditions and consistently outperform all other methods. This results indicates that even

with the incorrect number of clusters, growth mixture models still approximate the true

cluster distribution the best. Refer to Figure 4 for these results.

XXXXXXXXXXXXX
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X Figure 4 about here

XXXXXXXXXXXXX

Number of Clusters

A clear dichotmomy emerges when examining the results by the number of cluster

conditions. In conditions where only two clusters exist in the true solution, k-means on full

data, finite mixture models, and growth mixture models all perform at similar levels,

choosing the correct number greater than 90% of the time. This changes substantially,

however, on conditions with three clusters. Both k-means on baseline and full data show

very poor performance on the cluster choice metric for these conditions, with both methods

actually getting worse as sample size increases. Both finite and growth mixture models, on

the other hand, show modest increases, reaching approximately 30-40% in the larger

sample size conditions. Again a similar pattern emerges where growth mixture models yield

the best performance on the cluster choice metric until the sample size exceeds 600, when

finite mixture models then has the best performance. Refer to Figure 5 for these results.

XXXXXXXXXXXXX

X Figure 5 about here

XXXXXXXXXXXXX

When examining KL-divergence by number of cluster, the same pattern emerges. In

this case, both k-means on baseline and k-means on full data show remarkably similar

performance in the two cluster condition. Both finite and growth mixtures are more

separated, but stable as sample size increases. As expected, all four methods show worse

KL-divergence when there are three clusters rather than two. Again, the same pattern

exists for the three cluster solution as well. Refer to Figure 6 for these results.

XXXXXXXXXXXXX

X Figure 6 about here

XXXXXXXXXXXXX
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Mahalanobis Distance

For the correct cluster choice metric, the Mahalanobis distance manipulation shows a

similar pattern compared to the number of clusters manipulation in relation to sample size.

That is, in the smaller cluster separation condition (M = 1.5), all methods with the

exception of k-means on baseline are relatively stable. This changes in the larger cluster

separation condition (M = 3), where only finite mixtures and growth mixtures show

increases with sample size, while both k-means methods are again stable. An interesting

result here is how both k-means methods are relatively stable across sample size with a

proportion cluster correct of about 0.50. This indicates that, regardless of cluster

separation, the silhouette width metric is most likely going to choose the smallest k

available (two in this case). This differs from BIC, which while stable across N for smaller

cluster separation, shows substantial gains as N increases for the larger cluster separation

condition. Finite mixture models actually get close to 100% cluster correct in the largest

sample size, larger cluster separation condition. Refer to Figure 7 for these results.

XXXXXXXXXXXXX

X Figure 7 about here

XXXXXXXXXXXXX

The same pattern for KL-divergence is seen when examining results by the cluster

separation condition, with one exception: k-means on baseline actually outperformed

k-means on full data in the smaller cluster separation. In addition, both k-means on

baseline and k-means on full data actually show worse cluster misfit in the larger cluster

separation condition compared to the smaller separation condtion. Both finite mixture

models and growth mixture models, on the other hand, showed better cluster misfit in the

larger cluster separation condition, especially in those conditions with a larger sample size.

Again, despite being outperformed by finite mixture models in the correct cluster choice

metric with larger samples, growth mixtures again shows a much better approximation in

the large cluster separation condition. Refer to Figure 8 for these results.



DETECTING LONGITUDINAL HETEROGENEITY 18

XXXXXXXXXXXXX

X Figure 8 about here

XXXXXXXXXXXXX

Intercept-Slope Relationship

For the correct cluster choice metric, finite mixture models and growth mixture

models show similar patterns found in previous conditions, where growth mixture models

perform the best up to the sample size condition of 600, where finite mixture models are

then performing best. Both k-means on baseline and k-means on full data are also showing

similar patterns in previous conditions, such that k-means on full data is relatively stable

at approximately 0.50 proportion correct, while k-means on baseline is much worse for

smaller sample sizes, but increases to the same level in larger sample size conditions.

k-means on baseline actually outperforms k-means on full data when the clusters in the

dataset have different intercepts and the same slopes. Refer to Figure 9 for these results.

XXXXXXXXXXXXX

X Figure 9 about here

XXXXXXXXXXXXX

Again, all methods show similar pattern for KL-divergence when examining the

manipulation of intercept-slope relationship. Not surprisingly, k-means on baseline

performs very poorly when cluster intercepts are simulated to be the same. However, when

cluster intercepts are the same and cluster slopes are different, k-means on baseline shows a

similar amount of misfit to finite mixture models. Growth mixture models are relatively

stable across both sample size and intercept-slope relationship as before, and consistently

outperform all other methods. Refer to Figure 10 for these results.

XXXXXXXXXXXXX

X Figure 10 about here

XXXXXXXXXXXXX
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Discussion

The purpose of this simulation was to investigate the relative performance of growth

mixture models compared to other methods across a variety of sample sizes. As Peugh and

Fan (2012) note, sample sizes under 500 are considered to be small for homogeneous

structural equation modeling in some situations, and so heterogeneous structural equation

modeling might require even larger samples to yield accurate parameter estimates. As

such, it was hypothesized the growth mixture models would be outperformed by other

methods for smaller sample sizes due to the complexity of the estimation procedure. This

simulation was also the first to employ KL-divergence as a means to yield an aggregated

metric with the ability to evaluate cluster solution misfit, even when the number of clusters

chosen a priori were chosen incorrectly.

Overall, there were three main findings of note. First, results indicated that growth

mixture models clearly outperformed the other three methods across all sample sizes based

on the two metrics of proportion cluster choice correct and cluster solution misfit measured

via a Monte Carlo approximation of KL-divergence. However, these two metrics told

somewhat different stories. The cluster choice metric implied that growth mixture models

performed the best for smaller sample sizes, while finite mixture chose to correct number of

clusters for larger sample sizes. Contrary to this, KL divergence concluded that growth

mixture models consistently yielded the lowest KL-divergence value, indicating that growth

mixtures held the best approximation of the covariance matrix between the intercept and

slope parameter estimates. KL-divergence for growth mixture models was also shown to be

relatively stable as sample size increased, providing some evidence that even for smaller

sample sizes, growth mixture models yield fairly accurate parameter estimates.

Second, the silhouette width metric for both k-means on baseline and k-means on full

data typically chose the smallest number of clusters available, regardless of sample size.

Both finite mixture models and growth mixture models similarly showed poor performance

under datasets with a simulated three cluster solution, but only for smaller sample sizes.
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The BIC metric used for both showed substantial gains in performance as sample size

increased. This replicates previous, cross-sectional findings that show that probabilistic

clustering methods, such as Gaussian mixture models, typically outperform more

traditional clustering methods, such as k-means (Magidson & Vermunt, 2002).

Third, growth mixture models actually show a moderate decline in choosing the

correct number of cluster for larger sample sizes, contrary to what has been found in

previous research (Peugh & Fan, 2012). This is most likely due the software used for this

simulation, rather than an artifact for the method of growth mixture modeling. For larger

sample sizes, the lcmm package yielded missing values for the KL-divergence calculation in

about 4% of datasets. This was due to a non-positive-definite covariance matrix calculated

because of a very low sample size in one of the clusters, which indicates a higher rate of

solutions converging to local minima. However, excluding these exact same datasets for the

other three methods yielded no difference in results shown in this paper.

Limitations and Future Directions

In order to limit this simulation from getting too unwieldy, many simulation

conditions of interest were not investigated. For instance, both cluster sample size ratio

and covariance structure within each dataset were simulated to be equivalent. A much

more common occurrence in substantive applications of these methods is to have clusters of

varying sizes and shapes. If this were to be the case, it would be expected that both

mixture modeling methods would continue to outperform k-means, as latent variable

mixture models have the added flexibility of modeling different covariance structures for

each cluster within a dataset. Additionally, only one cluster choice metric was used to

determine the correct number of clusters a priori. In this case, silhouette width was used

for k-means and BIC was used for both finite and growth mixture models. In reality, many

different indices exist for these methods and are used in tandem with one another to

determine the best choice.
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As such, a future research idea that emerged from this simulation is to utilize

KL-divergence as an evaluation metric to revisit old research questions. For example, Peugh

and Fan (2012) compared various enumeration indices to determine which ones yielded the

largest proportion correct cluster choice correct and found the results varied depending

upon the specific simulation condition. Researchers could revisit these enumeration indices

to see if KL-divergence shows clearer patterns, much like the overall result in this paper.

Additionally, data were simulated based on a latent growth curve with a specified

linear trend. A benefit of both k-means and finite mixture models is that they can detect

and identify possible nonlinear trends with no requirement of model specification, because

both ignore the time-dependency in the data. Growth mixture models, on the other hand,

require a particular growth model to be specified first. In this study, growth mixture

models had the added benefit of being correctly specified in all conditions. Future research

could examine the impact mispecification could have on growth mixture models, by

comparing how misspecification affects both parameter estimates and cluster choice. Of

particular interest would be to examine the use of finite mixture models as a more

exploratory method of detecting longitudinal heterogeneity when researchers are unsure if

heterogeneity exists, and compare it to the estimation of growth mixture models with a

free latent basis (Grimm, 2007)

Conclusion

While the number of simulations regarding GMMs seems to increase as the

popularity of the method also increases, many other techniques to identify potential

heterogeneity in longitudinal growth trajectories also exist. This simulation showed that

even with the difficulties of growth mixture models with smaller sample sizes noted in

previous research, growth mixture models still consistently outperform other methods that

set out to accomplish the same thing. Additionally, KL-divergence emerged as a valuable

metric to evaluate clustering solutions for methods to detect longitudinal heterogeneity



DETECTING LONGITUDINAL HETEROGENEITY 22

that should prove useful in future simulation research on this topic. Still, more research

must be done in relation to how these methods perform in comparison to one another

under different simulated dataset conditions. By continuing to uncover this information,

researchers will have a better idea of what types of analyses to use in particular situations

to yield more accurate predictions.
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Figure 1 . The three simulated intercept-slope relationships.
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Figure 2 . The simulated latent growth model. Note that the correlation was fixed to be

0.2, and so the covariance was fixed to be approximately 0.05
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Figure 3 . Cluster choice correct metric by sample size and analytic method over all 72

dataset conditions.
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Figure 4 . KL-divergence metric by sample size and analytic method over all 72 dataset

conditions.
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Figure 5 . Cluster choice correct metric by sample size, analytic method, and number of

clusters.
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Figure 6 . KL-divergence metric by sample size, analytic method, and number of clusters.
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Figure 7 . Cluster choice correct metric by sample size, analytic method, and Mahalanobis

distance.
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Figure 8 . KL-divergence metric by sample size, analytic method, and Mahalanobis

distance.
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Figure 9 . Cluster choice correct metric by sample size, analytic method, and

intercept-slope relationship.
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Figure 10 . KL-divergence metric by sample size, analytic method, and intercept-slope

relationship.


